MANAGING PERIODICALS: A WEB APPROACH

By

Rajeev K R

SASKEN Communication Technologies Limited,

#139/25, Amar Jyoti Layout, Ring Road,

Domlur, Bangalore – 560071.

Phone: 5355503 Extn.2021

Email: krr@sasken.com

&

Abdul Jaleel Tharayil

IBM India, Airport Road,
1st Floor, GT Annexe,
Bangalore
Phone 5267117 Extn.2119
Email tabdul@in.ibm.com

Abstract: Periodicals are the sources of nascent information. Unfortunately, because of the irregularities in the publication intervals and the lack of unique code to identify each issue, libraries always find it difficult to manage the periodical database effectively. This paper discusses the advantages of using Internet technology for maintaining the periodical database. The database structure of web based periodical management system (PMS) is briefly discussed. Various tools required for creating a web based PMS are also covered. Sample codes for querying and updating the PMS database is also provided.

Introducation

Periodicals are the collection of latest information/articles on specific subjects published in certain pre-scheduled intervals. Today they are available in different formats such as print, CD-ROM, collections of journals on CD-ROM, Online access etc.

Because of the irregularities in publications and the lack of unique code to identify each issues of the publications, many of the library periodical management systems (PMS) were not fully successful in handling even the print versions of periodicals. The scenario has become much more complicated with the arrival of collection of periodicals in CDs and online periodicals. A web-based approach will certainly reduce many of the problems faced to handle the periodicals.

Today everything is web based. Most of the library users and professionals are familiar with the usage of web based applications. Even if a user or library professional is not familiar with the web, he/she does not take much time to learn how it works. In short, Web is a powerful tool to represent and disseminate the information. The web-database connectivity has made it possible to do almost all the transactions through web.

Basically we have to have a database management system (DBMS), a web Server and web programming language to start with the development of a periodical management system (PMS). There are a number of free as well as cost based DBMS, Web servers, and web programming languages. In this attempt Ms-Access (DBMS), Internet information server(IIS)/Personal Web server (PWS), Active Server Pages (ASP) and Windows 95/98/NT platform have been chosen for developing the PMS. The first step in the development of PMS is creation of a PMS database.

PMS Database Structure

To create a PMS, basically we have to have a database with the following structure.

1. Master journal table – This table may contain the following fields

1.1 Journal Number

1.2 Journal Name

1.3 ISSN

1.4 Format code of the journals (Print, online, CD, Collection of CDs, etc)

In addition to this, we will create sub-tables for entering, Web address, Publisher Address, Journal Subject Codes, etc and these tables will have ‘journal number’ as a common field.

2. An yearly status table – This table will be used to maintain the details of the subscriptions in different years and may contain the following fields

2.1 Journal Number

2.2 Year of subscription

2.3 Vendor Code

2.4 No of issues

2.5 Price

2.6 Remarks – This field can be used for showing whether the journals are bound, all the issues are received etc.

2.7 And any other fields that may be required to update the yearly status page.

Besides this, a sub-table will be created for entering the vendor Address and this table will have a field called vendor code and the fields for maintaining the vendor address.

3. Pre-scheduled record sets table. This table will contain the journal issues that have to be received in the subscribing year. Since most of journals publish in the pre-scheduled intervals, we can generate these to be received issues according to their publishing intervals using programmes at the time of ordering itself. Once we receive the journal issues we will move these records one by one to the journal issues maintenance table. Since the pre-scheduled record sets table will contain only the to be received journal issues, we can also use this table to generate the reminders for the vendors. This table will have the following fields.

3.1 Journal Number

3.2 Volume Number

3.3 Issue Number

3.4 Publication date

3.5 Approximate Receiving date

3.6 And any other fields that may be required to update the pre-scheduled record sets.

4. Journal issues maintenance table – This table will have the following fields.

4.1 Journal Number

4.2 Journal issues identification code – A unique code for each issues of a particular journal. May be generated using volume number, issue number and publication date. If we are planning to do the issue/return management not using the web, this code is a must, otherwise we may have to put lot of effort on programming side to maintain the records. Also we may use this code for showing the additional and special issues. This unique code can be generated using the programmes.

4.3 Volume Number

4.4 Issue Number

4.5 Publication date

4.6 Received date

In addition to these, sub-tables may be created to add other information and remarks.

5. Subject Code Table – This table will have subject and subject code fields. We will use these subject codes to represent the subject of the master journal. May be used in article indexing table also.

6. Transaction Table – This table is required only if library allows its users to borrow the journal issues. Basically this table will have the following fields: issue identification code, journal code, member code, issue date. In addition to these fields, there will be fields and sub-tables for maintaining reservation, renewal, transaction statistics and membership records.

7. If library plans to maintain article indexing, we will have to have an article indexing table. This table will have the following fields: Journal number, Unique journal issue code, Article title, Author name, Abstract of the article etc.

The above design of tables and fields can be used to form a PMS database, but doesn’t mean that one has to strictly follow the above steps to create a PMS database. People use different structures to accomplish their goals.

[image: image1.png]

The above picture shows the relation ship between the tables. All the tables have a common field named ‘journal number’. Because of this relation ship, we can query these tables and create different sets of data as per our requirements. Structured Query Language (SQL) can been used to query the table(s) in the database(s). SQL queries can also be used to UPDATE or DELETE record(s) in a table(s).

Web-Database connectivity

After creating the above database using Ms-Access, we will keep this database in one of the computers and create an ODBC system data source name (DSN) for the database in the machine where web server is installed. We will use this DSN to connect to the database from the web server or any other front-end tools such as Visual Basic etc. DSN can be created using the ODBC program seen in the control panel of Windows operating system.

Once we have an ODBC name we can query or update or delete records in the table(s) using web browser as a front end. The below figure shows the entire workflow.

In simple words, web server accepts the query from the client (Web browser) and orders the server side scripts/executables to do the modifications in the database or get the required information from the database as per the query from the browser. After collecting the information from the database or modifying the database, server side scripts/executable processes the results in to html format and gives it to the web server. Web server in turn sends this processed information to the web browser as an answer to its query.

Now we will see how we can query the PMS database to see all the journals ordered for the year 2002 and update the journal details. For this we have to crate three asp files. One for listing the journals (say alljournals.asp), One for viewing the details of the journal in html text boxes (say journaldetails.asp) and one for updating the title (say updatetitle.asp). All these files have to be put in the Web server and the folder, which carries these files, should have script-execution permission. Source code of all these three files are given in the appendix.

When we access alljournals.asp file from the web server throw web browser, it queries the ‘master journal table’ and ‘yearly status table’ to find out the journals for the year 2002 and out put the processed data to the web browser. In the html output, along with update link for each journal title, the programme also encode the Journal number (Refer example 1).

Example: 1 (alljournals.asp)
Actual code of alljournals.asp file in the web server

<p><ahref="alljournals.asp?jlno=<%=journal_no%>"><%=journal_name%></p>

HTML output to the browser

<p>Harvard Business Review</p>

Now when we click on Harvard Business Review (see the above example), it takes us to the journaldetails.asp file and show us the details of the journal in html text boxes. That means, the web server captures the journal number from the URL encode of journaldetails.asp file and integrate it with the SQL query to find out the details of the journal (Refer example 2, Part-I).

Example: 2 (journaldetails.asp file) part –I

<% jlno = request.qerystring("jlno") 'Capturing the URL encoding and stores in a variable called jlno.

if jlno<>"" then

 connectstr = "jlib" 'DSN for ODBC Connectivity

 SQLQuery = "Select * from master-journal where journal_no = "&jlno&" " 'integrate the captured information with the SQL Query
 Set mrjlrec=Server.CreateObject("adodb.Recordset")

 Mrjlrec.open SQLQuery, connectstr, adopenforwardonly 'Opens a record set

 Journalname = mrjlrec("journal_name") 'Stores the title in a variable

 Issn = mrjlrec("issn") 'Stores the issn in to a variable

 Mrjlrec.close 'Closes the record set

 Set mrjlrec=nothing 'Removes the entire connection from the memory

End if %>

Example: 2 (journaldetails.asp file) part –II

<html>

……………..

<form method="POST" action="updatetitles.asp">

<table><tr>

<td><input type="text" name="journalname" value="<%= journalname %>"></td>

<td><input type="text" name="issn" value="<%= issn %>"></td>

<input type="hidden" name="jlno" value="<%= jlno %>">

<td><input type="SUBIT" value="Update this record"></td>

</tr></table>

</form>

…………………
</html>

After making the required changes in the html text boxes, the details for the updation is sent to the updatetitles.asp file through html form submission method (Refer example 2, Part-II). updatetitles.asp file captures this information and integrates it with the SQL query to update the master journal table (Refer example 3).

Example: 3 (updatetitles.asp file)

<% jlno = request.form("jlno") 'Capturing the journal number from the form and stores in a variable called jlno.

Journalname = request.form("Journalname") 'Same as above except the variable name

Issn = request.form("issn") 'Same as above except the variable name

If jlno<>"" and journalname<>"" then

 Connectstr = "jlib" 'DSN for ODBC Connectivity

SQLQuery="Update master-journal set journal_name='"&journalname&"',

Issn="&issn&" where journal_no = "&jlno&" " 'integrate the captured information with the SQL Query
 Set mrjlrec=Server.CreateObject("adodb.Recordset") ‘Opens a connection

 Mrjlrec.Open SQLQuery, connectstr, adopenstatic 'Opens a record set for updation and closes it after the updation automatically.

End if %>

The above files are only samples of ASP files which queries and update the tables in the PMS database. To build up a fullfledged PMS, we require a number of ASP files which deals with different activities such as deletion, insertion and updation of records. So one should have a reasonably good knowledge in Vbscript (one of the script languages used in ASP), MS-Access and IIS/PWS. Vbscript is an easy scripting language compared to other scripting languages. People who have a taste in programming can easily pick it up for developing many library-related services.

Advantages of using the web browser for maintaining the PMS

 In Visual Basic and Visual C++, we may take much time to develop a user-friendly front end that talks to the database. Since such front ends are not enough to represent the information, normally we out put the reports and lists to text files and view it in the text viewers. But when we use web browsers as a front end, rather than creating text files, we normally view them in the browser itself. This is because web browsers are basically designed for viewing the information in better formats.

Another advantage is that, web browsers are free and dumped along with almost all the operating systems. If we develop a PMS using other programmes, we have to install it in multiple systems and maintain it separately. In addition to that, we would be able to use any operating system to update the PMS.

Problems with web based PMS.

Web based PMS may not be as fast as other front end tools such as Visual Basic and all. In Visual Basic clients, a large amount of data is processed in the client machine itself. So the work load is divided in different machines. But when we query a database from the web browser, entire data processing happens in the web server itself. Browsers do not do any data processing, they simply show the processed results on the browser. However the browser side scripts are being used for validating the data and represent the information in more dynamic way.

Another issue is that HTTP is a stateless protocol, meaning that Web server treats each HTTP request for a page as an independent request; the server retains no knowledge of previous requests. In ASP, We can use sessions to overcome this problem. ASP sessions assigns a unique user ID by means of an HTTP cookie, which is a small file, stored on the user's browser. So, if we are creating an application for browsers that do not support cookies, or if customers might set their browsers to refuse cookies, then ASP's session management can’t be used.

As mentioned before, ASP session programme gives a unique session id for each client (browser) and remembers it till we close the browser or the browser requests for a termination of the session. In IIS/PWS, if the session is idle for 20 minutes, it automatically gets expired. This default setting can be changed from the IIS/PWS settings or through VBScript programmes. Sessions take web server memory to store the information of each client. In addition to that whenever a client approaches the server, it has to verify the session id and gives the necessary information as per the variables stored in the session. This will certainly slows down the performance of the web server.

Though there are some disadvantages, compared to other platforms, web is more powerful than any other platform to disseminate the library related information.

Most of the commercially available PMS packages in India have not come up with a fully supported web based PMS. Even if they come, libraries may have to bare a large amount for upgrading the existing systems and may have to pay Annual Maintenance Charge to support the systems. I am sure that today library professionals are competent to develop their own PMS. We have so many associations in India to discuss the various matters regarding the library services. In the same way, we should build up a non-profitable library professionals group to author and distribute library management programmes free of cost and should well support it through its members spread over the various places in India. Library automation is one of the important services that we can offer to our users. Most of the commercially available software are not cable of coping with latest developments in the library field. We should take a special interest on the same and come with new tools that can provide more services to our users.

Appendix

alljournals.asp file

<html><body>
<% connectstr = "jlib" 'DSN for ODBC Connectivity
sqlquery="SELECT master-journal.*, yearly-status.* FROM yearly-status INNER JOIN master-journal ON yearly-status.journal_no = master-journal.journal_no where year_of_sub = 2002 "

set mrjlrec=Server.CreateObject("adodb.Recordset") 'opens a connection
mrjlrec.open sqlquery, connectstr, adopenforwardonly 'opens a record sets
if not mrjlrec.eof then

do while not mrjlrec.eof 'itrating the information from the record sets

journal_no = mrjlrec("journal_no ") 'stores the information to a variable

journal_name = mrjlrec("journal_name") %> 'stores the info. to a variable

<a href="journaldetails.asp?jlno=<%=journal_no%>"><%=journal_name%>

<% mrjlrec.movenext 'moves the record set one step forward to get the next record set

loop

else %>

No records found

<% end if

mrjlrec.close 'Closes the record set
Set mrjlrec=nothing%> 'Closes the entire connection

</body></html>

journaldetails.asp

<% jlno = request.querystring("jlno") 'Capturing the URL encoding and stores in a variable called jlno.

if jlno<>"" then

 connectstr = "jlib" 'DSN for ODBC Connectivity
 SQLQuery = "Select * from master-journal where journal_no = "&jlno&" "

 Set mrjlrec=Server.CreateObject("adodb.Recordset")

 mrjlrec.open SQLQuery, connectstr, adopenforwardonly 'Opens a record set

 journalname = mrjlrec("journal_name") 'Stores the title in to a variable
 Issn = mrjlrec("issn") 'Stores the issn in to a variable
 mrjlrec.close 'Closes the record set

 Set mrjlrec=nothing 'Closes the entire connection

end if

%>
<html><body>
<form method="POST" action="updatetitles.asp">
<table>
<tr><td><input type="text" name="journalname" value="<%= journalname %>"></td></tr>
<tr><td><input type="text" name="issn" value="<%= issn %>"></td></tr>
<input type="hidden" name="jlno" value="<%= jlno %>">
<tr><td><input type="SUBMIT" value="Update this record"></td></tr>
</table>
</form>
</body></html>
<html><body>

updatetitles.asp file
<% jlno = request.form("jlno") 'Capturing the journal number from the form and stores in a variable called jlno.

Journalname = request.form("journalname") 'Same as above except the variable name

issn = request.form("issn") 'Same as above except the variable name
if jlno<>"" and journalname<>"" then

 connectstr = "jlib" 'DSN for ODBC Connectivity

 SQLQuery = "Update master-journal SET journal_name='"&Journalname&"', issn='"&issn&"' where journal_no = "&jlno&" "

 Set mrjlrec=Server.CreateObject("adodb.Recordset")

 Mrjlrec.open SQLQuery, connectstr, adopenstatic 'Opens a record set for updation and closes it after the updation automatically.

end if %>

Record updated

</body></html>
References

1. Active server pages 3 by A. Russell Jones, BPB Publications'2000

2. Learnasp.com http://www.learnasp.com/

3. Web databases: A better solution for organising the Internet resources” by Rajeev K R and Abdul Jaleel; DRTC Multimedia Conference proceedings ’2001

Master-Journal-Table�
�
Journal_No�
�
Journal_Name�
�
ISSN�
�
Format_code �
�

Yearly-Status-Table�
�
Journal_No�
�
Year_of_sub�
�
Vendor_Code�
�
No_of_issues�
�
Price�
�
Remarks �
�

Issue-Maintenance-Table�
�
 Journal_No�
�
Journal_issues_id_code �
�
Volume_Number�
�
Issue_Number�
�
Publication_date�
�
Received_date�
�

Pre-scheduled-Issues-Table �
�
 Journal_No�
�
Volume_Number�
�
Issue_Number�
�
Publication_date�
�
Approx._Receiving_date�
�

PMS Database

Server

Web Browser

IE or Netscape

Web Server

IIS or PWS

Server Side Programs

Vbscript on ASP

